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ABSTRACT 

This report deals with the development of two different 
analyses for the vibration responses in supercritical shafts:    one 
especially suited for the determination of support impedances (mass, 
spring, damping coefficients) for minimum vibration response in the 
criticals; the other for direct vibration response in terms of 
statically measured shaft defects.    The traveling wave concept is 
extensively discussed.    Presented is a preliminary parameter study 
of the simply supported rotating shaft with one flexible intermediate 
support subjected to a half sine wave defects distribution.    The 
effects of end masses are studied also.    Several conceptual designs 
of multiring damping assemblies which can accommodate the damping 
requirements of hypercritical shafts are included in the report. 
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PREFACE 

The following constitutes the final technical report concerned 
with research accomplished under a grant awarded by the U. S. Army 
Aviation Materiel Laboratories (formerly U. S. Army Transportation 
Research Command),  Fort Eustis,  Virginia, under grant no. 
DA-AMC-44-177-63-G10 to the Research Laboratories for the 
Engineering Sciences, University of Virginia, Chariottesville, 
Virginia,    The contract was monitored by Mr. D. Kane; the principal 
investigators were Dr. R.  T. Eppink and J. A.  Friedericy.    The pro- 
gram was initiated 1 July 1963 and terminated 15 September 1964. 
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SYMBOLS 

subscript indicating left-end support of 
shaft 

a. =      distance from origin to jth driving 
force 

area of shaft cross section 

A,   , A,   ,  A.   , A. =       arbitrary integration constants to the 
1      *2 3        4 solution of the equation of motion in 

the (f, _ 1.^1.) span of the shaft 

A, =      vector representation of A.   , A,   , A,   , 

b =       subscript indicating right-end support 
of shaft 

C .,  C =      functions defined in Appendix I 

C  ,  C, -      functions defined in Appendix I 

Cu, Ci2,  C21,  Czz =      functions defined in Appendix I 

Ci, Cz, , C =      translational damping coefficients, 
respectively,  at intermediate supports 
1,   2,   ---,  n 

E =      vector related to distributed driving 
forces evaluated at x = 0 and x = i 

ei>  e2f  e3 -      functions defined in Appendix I 

i E 

Kl      E s 

E =      shear modulus for shaft material 
8 

E =      Young' s modulus for shaft material 
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Fii,  Fi2 =       normalized components of internal 
force along the Xz,  X3 axes, 
respectively 

Fjti,  F22 =      normalized components of internal 
moment along the -X3,  X2 axes, 
respectively 

Fi,  F2 =       internal force and moment vectors, 
respectively 

G. =       coefficient matrix related to the 
impedance at the (k -  l)8t support 

H(x) =      Heavyside function 

H , H. =      characteristic coefficient matrices at 
the left- and right-end supports, 
respectively 

I =      moment of inertia of shaft cross 
section; also used to denote the 
identity matrix 

j =       subscript indicating jth driving force 

k =       subscript indicating kth intermediate 
support 

K1 ==       shape factor for shaft cross section 

Ki,  K2, ,  K =      translational spring coefficients, 
respectively,  at intermediate supports, 
1,  2, ,  n 

I =      length of shaft 

1 =       distance from origin of shaft to 
location of nth intermediate support, 
also used as the distance measuring 
the location of the single intermediate 
support in the transmission line 
analogy analysis 
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m =       superscript indicating a modified 
deflection wave traveling through the 
intermediate support 

N =      total number of driving forces 

n =      total number of intermediate supports, 
also used as an arbitrary real 
constant in the reformulation of the 
integration coefficients A,  B,  C,  and 
D 

P(x) =       normalized single driving force vector 
at location x 

Q =       normalized force vector 

qi,  qz =       arbitrary constants used in the refor- 
mulation of the integration constants 
A,  B,  C,  and D 

rj,   Tz =       arbitrary constants used in the 
reformulation of the integration 
constants A,  B,  C,  and D 

R(x) =      propagation matrix of a traveling wave 
evaluated at x 

R. =      coefficient matrix related to the 
impedance at the (k - l)st support 

s =       -iw 

> < 
U(x),  U(x) =       incident wave functions,  respectively, 

traveling to the right and left 

»       « 
U{x),  U(x) =       reflection wave functions,  respective- 

ly, traveling to the right and left 

>»      <<< 
U(x),  U(x) =      total wave functions,  respectively, 

traveling to the right and left 
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Xt. X2, Xj -      right-handed orthogonal coordinate 
axes 

x -      distance from origin to a generic point 
on Xi axis 

Y11, YIJ; =      normalized projections of the deflec- 
tions of elastic curve of shaft on the 
X1X2 and X1X3 planes,  respectively 

Y21,  Y22 ~       normalized projections of the angles 
of inclination of elastic curve of shaft 
on the X1X2 and X1X3 planes, 
respectively 

Z  ,  Z, ,  Z, =       Impedances at left- and right-end 
B supports and kth intermediate support, 

respectively 

V        E I 
y 

r (x), r, (x),  r,   (x) =       reflection matrices at left- and right- 
end supports,  and the intermediate 
support,  respectively 

€ (x) =      normalized vector distance of mass 
center from axis of rotation of shaft 
evaluated at a distance x from the 
origin 

€0 =       amplitude of the half sine wave defects 
curve 

4* (x) =       rth normal mode of vibration for a 
free-free beam 

w =       angular velocity of shaft and driving 
forces 

w =       natural frequency of the simply 
supported shaft 

p =      mass density of the shaft material 
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SUMMARY 

This report deaJs with an efficient approach leading to the 
direct optimization of support conditions for the hypercritical shaft 
flexibly supported on two mass-spring*damper units at the ends and 
one mass-spring-damper unit at the interior.   It is based on the 
traveling wave concept as used in electrical transmission line theory. 
The governing differential equation used in this analogy includes terms 
which account for the effects of rotating inertia, gyroscopic motion, 
and shear deformations. 

The terminating impedance corresponding to minimum 
vibration response of a rotating shaft is the characteristic impedance 
of the shaft.   This condition is termed a "matched" condition.   For the 
shaft with both end impedances matched, no additional intermediate 
support is needed for further minimization of vibration response. 
However, when the shaft and end support impedances are not matched, 
the closer the matched intermediate support is placed to one of the 
ends, the more effectively it will minimize the vibration response of 
the shaft. 

Included also in this report is the development of an analysis 
which predicts the vibration response in terms of given initial defects 
for the hypercritical shaft on multiple translational mass-spring- 
damper supports.   The solution in this case is obtained by applying the 
vibrating beam equation to each individual span between supports and 
correlating the responses between consecutive spans by the use of 
appropriate boundary and continuity conditions at the supports. 

A computational procedure of the resulting simultaneous 
equations has been programmed for the University of Virginia 
Burroughs B5000 digital computer.   A limited parameter study has 
been performed for a simply supported 4.5-inch-outside-diameter, 
28-foot-long aluminum Stiaft with one intermediate support.   The 
results tend to agree with the major conclusion of the transmission 
line analogy studies which states that the closer the intermediate sup- 
port is located to one of the end supports, the more effectively it will 
minimize the vibration response of the shaft.   Another important con- 
clusion reached in the parameter study is concerned with the 
observation that the vibration responses tend to decrease with 
increased damping, provided that the spring stiffness of the 



intermediate support is negligible.   The effects of end masses on the 
natural frequencies of shafts supported on two flexible exterior sup- 
ports have been studied also. 

Several conceptual designs for multiring damping assemblies 
to provide the required damping for the Battelle model shaft and the 
proposed Chinook hypercritical drive shaft have been developed with 
existing computer programs.   It was found that dampers having fre- 
quency dependent characteristics are too massive for practical 
application.   However, by sacrificing Üiese characteristics, light- 
weight dampers using low viscosity fluids are feasible. 



CONCLUSIONS 

The studies in this report lead to the following conclusions: 

1. The transmission line analogy can be extended to shafts 
having one interior support.    For shafts having more 
than one interior support,  simplifying assumptions 
should be introduced into the analysis. 

2. For the shaft with both end impedances matched with 
the characteristic impedance of the shaft, no inter- 
mediate support is needed to assist in the minimization 
of vibration response. 

3. When the shaft and end support impedances are not 
matched, the closer the matched intermediate support 
is placed to one of the ends, the more effectively it will 
minimize the vibration response of the shaft. 

4. The vibration response of a simply supported shaft with 
one flexible intermediate support tends to decrease with 
increased damping, provided that the spring stiffness of 
the intermediate support is negligible.   Changes in 
damping of the intermediate support do not significantly 
affect critical frequencies; on the other hand, changes 
in spring cause appreciable shifts in the critical fre- 
quencies.   Massiveness of end supports will affect the 
mode shape and critical frequencies of flexibly sup- 
ported shafts. 

5«     The effects of dropping the rotational inertia, gyro- 
scopics, and shear deformation terms from the equa- 
tions of motion of hypercritical shafts are negligible for 
the frequency ranges in which hypercritical helicopter 
drive shafts are expected to operate. 

6,     Frequency dependent multiring dampers which accom- 
modate the damping requirements for hypercritical 
shafts on a one-to-one basis are too massive for practi- 
cal application to the Chinook drive shaft.   However, by 
sacrificing variable damping characteristics, a light- 
weight damper using the less temperature sensitive, 
low viscosity fluids is feasible. 



RECOMMENDATIONS 

Work on the transmission line analogy should be extended to 
shafts on many supports.   However, in view of the complexity of the 
ensuing algebra, it is suggested that the simpler vibrating equation 
(which leaves out rotational inertia,  gyroscopic motion,  and shear 
deformation terms) be used in the derivations of the wave forms.   In 
addition, studies are needed to investigate the effectiveness of sup- 
ports having either translational or rotational characteristics   not 
both, as is required for an exact match of the shaft and support imped- 
ances.    Mathematically, the use of translational or rotational supports 
only leads to the selection of conditions in which only the predominant 
ru term of the reflection matrix vanishes.   It can be shown that as 

exp(e2^/wl )     tends to zero (i.e., as w increases), the reflection 

matrix tends to approach 

bn^   n'      1bnii ^  n^' 

such that either a translational or a rotational support may just as 
effectively suppress vibration response.    This type of match is called 
a "quasi-match" and could lead to the development of simple design 
formulas which predict the "best" impedance values in terms of fre- 
quency for a given shaft and support configuration. 

Work on the vibrating beam analogy requires additional results 
to complete the support parameter study.   One should be able to 
eventually establish the "best" intermediate support spring and damp- 
ing coefficients and location for a shaft having a number of different 
end support conditions.    Furthermore, the analysis should be general- 
ized to account also for supports having rotational spring and damping 
characteristics.   Eventually, optimum support values as obtained by 
the transmission line analogy should be verified in a parameter study 
with the vibrating beam analogy.   Another use for the computer pro- 
grams of the vibrating beam analogy would involve a numerical study 
of permissible runouts in terms of maximum mass unbalance values 
for a number of realistic shaft defects configurations.   Such a study 
would be very useful in establishing fabrication tolerances. 



INTRODUCTIOiN1 

OBJECTIVES 

The theoretical study of the performance of rotating flexible 
drive shafts presently under investigation as a means of transmitting 
power in Chinook helicopters has the primary objective of arriving at 
analytical tools which will evaluate performance in terms of physical 
quantities in a satisfactory manner.    Analytical behavior studies are 
usually undertaken to aid experimental programs in providing direction 
and testing guidelines.   At times they will eliminate the need for an 
elaborate and expensive test program.    Moreover,  a complete under- 
standing of hypercritical behavior of shafts is necessary in the 
development of techniques for operation at and between "critical 
speeds" without detrimental effects. 

Successful operation of flexible shafts is usually achieved by 
balancing to reduce dynamic forces and also by introducing support 
conditions (spring,  damping,  mass) which tend to minimize runout 
amplitudes and/or bearing loads at the important critical frequencies. 
Both of these techniques should be employed simultaneously to bring 
about smooth shaft operation through the criticals.    Although the pro- 
vision of appropriate spring,  damping,  and mass coefficients (imped- 
ance) at the supports, by itself,   may permit the rotor to negotiate the 
criticals in an acceptable manner, the ease with which this may be 
accomplished will be greater for the better balanced (less crooked) 
shaft.    Balancing of a hypercritical shaft may be achieved by either 
the proper attachment of counterweights or the placement of greater 
restrictions on the fabrication tolerances of the shaft. 

Different mathematical procedures have to be developed for an 
effective study of the relative merits of each of the techniques.    The 
analysis of a flexible shaft supported at various points along the length 
by flexible damping bearings is represented with reasonable accuracy 
by the steady state solution of the equation of motion for the beam 
vibrating in two mutually perpendicular planes.   This solution of the 
"vibrating beam analog" is worked to simulate the performance of the 
rotating shaft under actual running conditions in which the' shaft defects 
provide a distributed forcing function.   On the other hand, the solution 
can be interpreted also in terms of a "transmission line analog. "   This 
approach is based on the recognition of the existence of an analog 
between the amplitude response of the vibrating beam and the voltage 



variation in electrical transmission lines.   Performing rather lengthy 
but straightforward algebraic manipulations to the solution, the 
dynamic responses arc expressed in traveling wave form along the 
lines of electrical response waves in transmission line theory. 

While the vibrating beam analogy solution provides a means of 
theoretically studying the effects of imperfections and balancing in the 
form of phybically observable quantities (amplitude runouts and phase 
shifts) allowing a direct comparison with experimental measurement, 
the transmission line analogy solution is particularly useful for the 
direct establishment of the support conditions needed for optimum 
shaft operation through the criticals. 

The purpose of this report is to present the development of 
analyses for the rotating hypercritical shaft in terms of the vibrating 
beam and transmission line analogs and to indicate the usefulness of 
these tools in terms of representati e qualitative and/or quantitative 
results.    Presented also are conceptual designs of squeeze film 
dampers which could provide the support impedances required for 
successful operation of certain hypercritical shafts.    It is anticipated 
that the computer program and the damper designs which resulted 
from this work will be of use in the experimental studies of hyper- 
critical helicopter drive shafts conducted by the Vertol Division of the 
Boeing Company,  Morton,  Pennsylvania,  and the Machine Dynamics 
Group,  Battelle Memorial Institute,  Columbus, Ohio. 

SCOPE 

The studies covered in this report were concerned with: 

1. An extension of the University of Virginia electrical 
transmission line analog for hypercritical shafts to 
include the effects of an intermediate support. 

2. The development of a computer program based on the 
vibrating beam analog which calculates the amplitude 
runouts of hypercritical shafts on multiple flexible sup- 
ports at given frequencies in terms of statically 
measured defects (initial bow, ovality,  wall thickness 
variations). 
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3. The selection of two-ring squeeze film dampers to 
accommodate the damping requirements in both the 
Bauteile shaft model and the 4. 5-inch-outside-diamater, 
28-foot-long Chinook helicopter drive shaft. 

In particular,  this report presents the analyses associated with 
the work developed under items 1 and 2.    The significance of these 
analyses is discussed in detail.   Numerical results are presented with 
the work of item 2 which represents a preliminary parameter study in 
terms of several different dampers and spring coefficients for the 4, 5- 
inch-outside-diameter,  28-foot-long flexibly supported Chinook drive 
shaft with one intermediate support.    The work accomplished under 
item 3 has been presented in earlier reports (References 1,  3, and 4]. 
References 2 through 4 also deal with preliminary work performed 
under items 1 and 2.   Additional work performed under item 2 is a 
numerical study on the effects of end support masses on the critical 
frequencies of shafts on two exterior spring supports.   This work has 
been reported in Reference 5. 

The analysis based on the transmission line analogy is 
concerned with the specific development of the traveling wave forms 
for the uniform shaft flexibly supported on two rotational and transla- 
tional mass-spring-damper units at the ends and one such unit in the 
interior.    No attempt has been made to consider multiple interior sup- 
ports because of the complexity of the algebra.    The wave forms for 
the simple interior support problem are already the result of extensive 
algebraic labor.   However, the solution is kept in as general a form as 
possible; that is, the rotary inertia, gyroscopics,  and shear deforma- 
tion terms have been retained.   On the other hand, the analysis based 
on the vibrating beam analogy applies to the rotating shaft on multiple 
flexible supports,  and in the governing differential equation the extra 
inertia and shear terms have been neglected.   In addition, the 1   xible 
supports are strictly translational in character; they do not resist any 
rotat.:^nal motion of the shaft.   Computations show that the effects of 
rota,    inertia,  gyroscopics,  and shear deformation terms on natural 
frequencies and runout amplitudes are negligible for the frequency 
range in which hypercritical helicopter drive shafts are expected to 
operate.    Therefore,  the simplified equations of the vibrating beam 
analog should represent a reasonably accurate model of hypercritical 
shaft behavior. 

9 



The transmission line analogy was first developed in 1961 by 
Nelson [ Reference 6) on end supports only.    Independent of the 
University of Virginia work, Voorhees et al [ Reference 7) of the 
Battelle Memorial Institute, Columbus, Ohio, formulated their version 
of the transmission line analogy.   Although founded on the same con- 
cept of relating a supercritical shaft performance to a firmly estab- 
lished and well-understood electrical problem, the two approaches are 
quite different. 

The Battelle analogy is a direct analog in which the fourth- 
order differential equation of motion has been reduced to an approxi- 
mating second-order equation without the gyroscopic motion,  rotary- 
inertia, and shsar deformation terms.    To make this reduction in 
order possible,  a one-to-one relation between moments and deflections 
of the beam is assumed which necessitates a compromise in the repre- 
sentation of boundary conditions.   The approach has the advantage that 
all of the terminology and computational aids developed for the electri- 
cal transmission line problem can be utilized directly in the design of 
supports for supercritical shafts. 

The University of Virginia transmission line analog}-   on the 
other hand, is not a direct analog, but rather a mathematical analog. 
The fourth-order differential equation which governs supercritical 
shaft behavior is solved in an exact manner.    The various component 
terms to the solution are then reformulated in such a manner that 
these terms are mathematically analogous to the standing wave terms 
in the solution of the less complex transmission line equations.    In 
this form, the solution to the fourth-order equation can be interpreted 
in terms of the same physical concepts used for the electrical trans- 
mission line problem.    Thus the shaft runout is treated as a series of 
deflection waves (voltage waves) traveling along the shaft (trans- 
mission line).    These waves are in part absorbed and in part reflected 
at the supports (load). 

10 



TRANSMISSION LINE ANALOGY SOLUTION OF THE HYPERCRITICAL 

SHAFT WITH ONE INTERMEDIATE SUPPORT 

THEORY 

1.      Assumptions and Notations 

It is shown in Figure 1 that the mathematical model of a pris- 
matic shaft is embedded in a right-handed orthogonal normalized space 
coordinate system with axes Xi, X2,  and Xj.    Let So represent the 

shaft with elastic curve S.   Let Ao and Bo. where the end supports are 

attached, represent the end bodies with elastic curves A and B. 
respectively.   The intermediate support is attached to the shaft at 
x= I , where 0<f   <f. Force, torque, and motion along the Xi axis 

is assumed to be zero.   Constant angular velocity, small transverse 
motion, axial symmetry, and linearity are assumed throughout. 

For points on the elastic curves. A, S, and B define "position" 
as the vector 

Y •= 

LYa 

♦ « 
Y,i   + i  Y12 

+ i   YM. 

♦ ♦ 
where Yn and Yu are the projections of the deflections of the elastic 

curves A. St and B on the Xi X2 and X| X3 planes, respectively.    Y a 

and Y22 are, respectively, the angles of inclinatioii of A, S, and B on 

the planes Xi X2 and X) Xj (see Figures 2 and 3). 

Similarly, define "force" as a vector 

r  *1 

* 
9u I Qi,   + i Qu 

Qa  + i Qzz 
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where the Qu and Qu are the components of force along the X2 and 

X3 axes, respectively, and Qa and Q22 are the components of torque 

along the -Xj and X2 axes, respectively. 

The force vector P denotes the "driving force" which can be 
related to lack of straightness and balance in the shafts. The driving 
forces are applied on the shaft at a finite set of points x - a. j = 1. 

2.  . .  . N and x is an element of (0,1). an open interval with end 
points 0,1. 

Similarly, let the force vector F    denote the "internal fcrce" 
which applies to the differential mass element (see Figures 2 and 3). 

2. Equations of Motion for the Shaft 

The equations which govern the behavior of rotating shafts 
include the effects of gyroscopic motion, rotational inertia, and shear 
deformations.   The projections of an infinitesimal element of the shaft 
of length dx with all the forces acting on it are shown in Figures 2 and 
3. The symbols used in these two figures are listed as follows: 

"*"   denotes the unnormalized variable 
w   = angular velocity of the rotating shaft 
I    = moment of inertia of the shaft cross section area 
P    = mass density of the shaft material 
A   = area of the shaft cross section 

Considering the projection on the Xj X2- plane only for the time 

being, one may obtain the following two equations by applying equili- 
brium conditions (see Figure 2). 

By summing moments, 

F*   - F2rx - fiYatt " 2 I«    Yut = 0. (D 

By summing forces, 

Fux   +   AY*«   =0, (2) 
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By applying the shear relationship. 

F*  = K1AEs (-Yjtx - Ya ) 

where 

K1 = numerical factor depending on the shape of cross 
section 

= shear modulus for shaft material 

= slope of deflection curve 

= slope of deflection curve when shearing force is 
neglected 

= change of slope deflection curve due to shearing 
force only 

The above equation may be rearranged as 

F* + lOAE (Y*x + YI) = 0. (3) s 

E s 
• 

Yux 

Ya 

Yux - Ya 

By applying the bending relationship. 

* 
* X21X 

Fa =    
E I 

y 

where 

* 
F21 = moment on the differential section 

Yax = change of slope of deflection curve 

•E = Young's modulus for shaft material 

The above equation may be rearranged as 

Fa + EyIYax = 0. (4) 
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Similarly, considering the projection on the X1X3 plane which 

is an imaginary plane, using the same arguments as before, one may 
obtain the following four equations (see Figure 3). 

F,*  - FJä - pIY^tt + 2 pi«   vjt = 0. (!') 

Fux+ pAY,*^ = 0. (2«) 

F,*   + K'AE    (Yux + Y?2) = 0. (3') 

FM+EyIYMx = 0. (4«) 

Combining each pair of equations such that equation (k) + i 
equation (k1) where k = 1, 2, 3, 4. one may obtain the corresponding 
four equations as follows: 

(F* + IFu) - (FSX + iFw) - Pi {Yntt + iY^tt) + 2ip« {YSti Y?2t) = 0. 

(Fnx + iF,*^) + pA(Yritt + iYrm) = 0. 

(F* + IF,*) + K'AEs       (Y*,,   + iY^) + (YJ  + iY«)       = 0. 

(FJ  + IFM) + EyI (Yax + iY^x) = 0. 

Applying the notations for position vector and force vector as defined 
at the beginning of the section, one may rewrite the above equations in 
more compact forms. 

16 



F|    - FJX -   pnttt + 2ipl«    Yrt = 0 

Fix + PAY»« = 0 

F,*   + K'AEg (Y»^ + Y?) 

F*   + EylY^x  = 0. 

- 0. 

For normalizing these equations of motion. R^, E A, and 

R./C   are used corresponding to unit length, unit force, and unit 

time, respectively.   R.  and C   are, respectively, radius of gyration 

in bending and the velocity of sound for the shaft material.   Note that 

C   =   y —^- . Applying the standard procedures for normalization, one 

may obtain the differential equations of motion in the following forms: 

Fi   - F2X - Yztt + 2i«   Yzt = 0 

F,x + Yltt = 0 

F2 + Yot = 0 

e'F, + Yix + Y2 = 0 

(5) 

1      E 
where e' = (-j^) -^_ . 

s 

The above motion equations in Laplace transform form are: 
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F|   - Fee + 8(2i«    - s) Y2 = 0        > 

Flx + s^,  = 0 

F2 + Yoc = 0 

e'Fi + YIX  + Y2 = 0 

(6) 

where Yi and Y2 are, respectively, the transverse position and the 

inclination of normal of the elastic curve of shaft. 

In equation 5, eliminating Fi,   Fa,   and Yz,  one may obtain the 

governing differential equation of the system in the following form: 

Yixxxx + Yi« - (1 + e«) Ylxxtt + e'Y,ttn +  21« (Ylxxtt - e« Ylttt) = 0.    (7) 

With concentrated driving forces acting on the shaft, the steady 
state solution to this differential equation may be represented in the 
form 

Y, =y(x)e iwt 

where w = angular velocity of driving force and yix) is of the form 

y(x) = Ae *     + Be        + Ce  ^ ■♦■ De ^ 

where ri, r2, ra  and r* are the roots of the characteristic equations 

of the governing differential equation.   A, B, C. and D are the arbi- 
trary integration constants. 
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3.      Solutions for the Equations of Motion 

A more physical model of shaft which corresponds to the 
mathematical model in Figure 1 is represented in Figure 4.   The shaft 
end conditions and the condition of the intermediate support are 
described as impedances or mobilities, and P(a.) is the jth driving 

force in the open interval (0,1).   The impedances are denoted, 
respectively, as Za(0). Z^l) and Zn(ln) for the left end support, right 

end support, and intermediate support. 

Because of axial symmetry, the relation between the force 

vector Q and the position vector Y may be written in either of the two 
following forms: 

Q = sZY or Y  =-MQ, 
8 

where "~n danotes the Laplace transformation and s is the Laplace 
transformation variable.   Z and M are. respectively, called imped- 
ance and mobility in 2 by 2 matrices with complex entries.   It will be 
assumed that the impedance or mobility of the supports is known or 
can be calculated. 

Taking the Laplace transformation of equation 7, 

Yixxxx + 8[2iw    - s{l + e')] Ylxx + s2 [ 1 + 8e' (s - 2iw )]?, = 0. 

Let Y, = AeriX + Ber2X + Ce** + De**, then 

r4 + s [ Ziw   - 8(1 + e') ] r2 + s [ 1 + se' (s - 2iw ) ] = 0. 

which yields 

ri.  rz = ± iei V" 
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where 

U   =  IS 

ei =   yij ^ e,w 

63 =     Vl + tt2'+ a 

a = w   - ^is (e* - 1) . 

and gives 

rs, r4 =  * ez yw 

where 

62 = V63 - 6* w  . 

By applying the relationships in equation 6, one may derive the 

expressions for Y2,   F,,  and F2: 

* ei 61 62 62 

Fa =  U,[ -   i    A6ri X -    I   B6r2X+  63C6r3X  +  63136^] . 
63 63 

Introducing another arbitrary set of constants, qi,  q2. rj,  r2. such 
that 
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A i    n+1 

B - - — ». e3q1 

- i   n+1 C = w      ejr» 
s *   * 

D = T"      e2C|2' 

#%,# ^^ 
one may rewrite the expressions for Yi, Y2, Fi, F? as follows: 

Y2 = i ^[j/2 e-iei ^q, -ie^c^^cu - ^ ie> /^r, + ie^e*2 V^r2] 
8 

F, = J1! -icaA'"'^ + ^e'^^qz + ie^V^/^r, - u?/2ee^Pcr2 ] 

?C _ , nr     .    -ieA/uoc -ezJux      , iei/wx ei%fük     i F2=w   leifcjc      •      q! - eze^e      '     qz + CjWe   ' »     ri - ezejwe     f     rz j 

>('i) 

Defining q = 
qr 

iqz 
and r = - n • two arbitrary constant 

vectors in a two-dimensional complex vector space, the above four 
equations may be written in the following compact form. 

Y s     y 0 "cM C12' 'R(X) 0 q 

F 0 c. C21 c« 0 R(x) r 
(9) 

where C  ,  Cf,  Cn ,  Cu,  Cn, and C22 are given in Appendix I.    The 

"propagation matrix" R(x) is a function of the real numbers defined by 
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CIS (e,V^) 0 

R{x) = 
expi-eiyfws) - 

where 

ci i80 
iO cos0 + isin^ 

expo 
B 

Simply by expanding the matrix form of equation 9, one may verify this 
equation to be the same as equation 8. 

4.       Boundary Conditions 

Applying the boundary conditions at x = 0, a., £  , f on the Xi 

axis, one may determine the integration constants appearing in the 
iution of the differential equation (sec equation 9). 

The boundary conditions employed here are: 

at x = 0, - F (0) = 8Za (0) Y (0) ; 

at x = a., 
J 

Y (a. - 0) = Y (a. + 0) 
J J ' 

F (a   - 0) + P (a. + 0) = 0; 

at x = Ä n Y (I    - 0) = Y (JP    + 0), x  n       ' n ' 

F (^    - 0) - F (^    + 0) = sZ   (I  ) Y (^    - 0); n       ' n       ' n    n' n       ' 

atx = < Fit) = sZh{ll) Y (l); 
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where -0, +0 denote, respectively, the limit from the left and the 
limit from the right. 

5.       Reflection Matrices at Supports in Terms of Characteristic 
Impedances 

Several functions are useful for the process of evaluating 
boundary conditions.   At x = 0 on the Xi axis, the reflection matrix 
r  (0) is defined in terms of end impedance by 

r (o) = [-Cz2 + za(o)c12p [c2, -^«»c,,].       do) 

where 

A      #    #    # 
z  =  EZE,   E = 

1       0 

.0     -Ij 

At x - I on the X| axis, the reflection matrix r, (I) is defined by 

rb(*) = [-C22+z  WCuPfCzi  - 2b(l)Cn]. (H) 

where 

1    ###    # 
z =  ■—.FZF,  F = 

1 

o   -y Oi 

At x = f    on the Xi axis, the reflection matrix F    (^ ) is n bn    n' 
defined in terms of Z. (I) and Z (I ) by b    ' n   n     ^ 

rbn«n) = [-c2i + zbn(Jn)c12 ]■' [c21 - ^„«jc,,),        (12) 

where 
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bn    n'        b    n'        n    n' 

zhifn) = 102» + ci2rb(fn)] [Cu + c12rb(fn)p 

On the closed interval [0, f ] reflection matrices r  (x), r  (x) 

and ^u-Cx) are defined,  respectively, in terms of r  (0), ^h(^) and 

rb„"n' by 

rjx) = R(x)ra(o)R(x) 

rb(x) = R(l - x)rb(l)R(f - x) (13) 

rbn(x) = R(fn - x)rbn(fn) R(fn - x). 

6.       Impedances in Terms of Reflection Matrices 

On[0, IJit can be shown that z (x) is related tor (x) by the 
equation 

£a(x) = [02,+ c22ra(x)] [cu + c12ra(x)];1 {14) 

Similarly, for ZuW andT (x) on(0, £), 

zb(x) = [C21 + C22rb(x)] [ Cn + C^r^x)]'1 (xs) 

and, for \nM. rbn^x^ on^0' ^ 

zbn(x) = [C21 +  C22rbn (x)] [CM + C,2^bn(x)]", (16) 

Thus, ZaJ Zjj and 7^n may be calculated on ( 0, f ]. 
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Let 

2Q = C21 Cn. (17) 

ZQ is called the characteristic impedance of a semi-infinite 

shaft looked at from the right.   Similarly, z_   is called the character- 

iTtic impedance of a semi-infinite shaft looked at from the left. 

7.      Solutions in Wave Form 

After determining the integration constants in terms of support 
conditions and proceeding with a lengthy algebraic manipulation of the 
resulting equations, one may express equation 9 in the following 
traveling «rave forms for N concentrated driving forces P(a-) on{ 0, |   j, 

«I 

applied at x = a^ az-   .  .  .  ,  a 

L F 

s    y 

L    0 

} 

On 

a., on the Xi axis. 

rc n '12 

>» 
-U(x)- 

:f-J    l-C21 C22J    Lu(xJ 

(18) 

where 

>»      »        > 
U(x) = U(x) + U(x) 

«<       «        < 
U(x) = U(x) + U(x) 

For 0 < x < f   , n 
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ü(x)=    ^ 

N 

R(x - a )C+Cf'
1 P (a.)[H(x - a ) - H(x - £n)I 

j = l (exist« only in a.<x <i) 

< N 
U(x) -      \       R(a. - x)C_Cf'

1 PCa^^a. - x). 

^ (exists only in 0<x<a^ 

» 
ü(x)= R(X)[I -ra(o)rbn(ö)] 'ra(o)[R(ln)rbn(ln)ü(<n)+u(0)]H(ln-x). 

(exists only in 0<x<l   ) ' n 

t< > 
u(x)= R(I   - x)[i- r. (I )r(f )]',rK (l )[u(« ) v '        x n       /l bn   n' a   n/J       bn   n/l        n 

+ R(fn)ra(o)u(o)]H(fn-x) 

(exists only in 0<x<I   ) n 

For I   <x<l. n 

u(x) = LOX) = R(X - ln)[i + c, lcurhun)] »[i + c,,'»curbn(in)]u(ln-o)H(x-ln). 

(exists only in I   >x>l) 

»       » » 
u(x)= u^x) = R(x-ln)[i + cll'

lclzrbUTi)]^[i + c1r
,curbn(£n)]u(in-o)H(x-in)1 

(exists only in I   <x<l) 

< < > 
U(x) = l^Cx) = R(l - x)r (l)Um(l)H(x - I  ). (exists only in I   <x<l) on n 
« « » 
U(x) = ^(x) = R(l - x)r. (^^(^Hfx - I  ). (exists only in I   <x<l) n 

0 p<0 
H(p) =    ^ and I = Identity matrix. 

1 p>0 
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DISCUSSION OF RESULTS 

1.       The Traveling Wave Concept 

The steady state wave interpretation of the solution of equation 
18 provides a means toward visualizing the effects of support param- 
eters (mass,  spring, damping) on hypercritical shaft behavior. 

Incident waves traveling along the shaft are considered as being 
initiated by the action of a single driving force P(a.) located at x = a . 
> < J 1 
U.(x) and U.(x) are defined, respectively, as "incident waves" traveling 

to the right and left from x = a .   They are independent of all support 
ronHitinn« 

U.{x) = R(x - a.) C+Cf'
lP{a.)[ H(x - aj) - H(x - *n)). 

< 
U.(x)- R(a   - x)C_C "»P^Hfa. - x). 

J J J j 

The propagation of the wave from the point of application, x = a., of 

the driving force P(a.) is described by the "propagation matrix, " 
•J 

R(x - a-) or R(a. - x), as the wave is traveling to the right or left, 
J J > 

respectively.   Thus, at x = jf  ,  U.(x) has traveled a distance (f    - a) 
n      j n       j 

to the intermediate support of the system.    The quantities 
[ H(x - a.) - H(x • f )]   and H(a- - x) simply indicate the regions in 

j n j 
which the waves exist.    The quantities C+C "'  and C_Cf"1    perform 

elementary transformations or operations on the applied forces and are 
associated with frequency and shaft characteristics. 

» 
A similar interoretation mav be ffiven to the Quantities 

« 
A similar interpretation may be given to the quantities U.(x) 

and U.(x), which are regarded as "reflected waves" traveling to the 
»I 

right and left,  respectively.    They may be expressed as follows: 
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» 
uj(x)= mil- ra(o)rba(o)i >ra(o)[R(in)rbn(rn)u.{ln) + u.(o)]H(ln - x). 
« 
u.(x) = R{in - x)[i - rbn(ln)ra(in)]-»rbn(in)(u.(fn) + R(fn)ra(o)uj(o)]H(ln • x). 

The second term in each expression may be restated as an infinite 
series: 

[' " ra(0)rb„(0) 1"' = ' + ra
(,"rb„(0' + ra(0)rb„(0)ra'0)rb„(0' 

+ ra(o)rbn(o)ra(o)rbn(o)ra(o)rbn(o) + — 

I1 - ^«'„'^"n)!"'^ + rb„(f„)ra(fn';i
I-b„"„>ra<fn)rbn('n)ra(,n), 

i ii ill 

^   bn    n'   a    n'  bn    n    an'   bn    n'  a    n, 
IV 

Calling the first term i, the second term ii, etc..  as noted above, one 
gets forlMx) L    (again H(f    - x) restricts the range of the waves to 

the open interval (0, f   )): 

» > < 
u.(x) !. = R{x)r (O)R(^ )r,   (£ )ü.{t ) + R(x)r (o)u.(o)„ jx '   i w   av '       n'  bn    n'   j    rr x  '  a    '   jy  ' 

< 
The last quantity,  U (0),  represents an incident wave traveling to the 

left at the point x = 0; i, e., the left end of the system.   If the quantity 
F (0) signifies that this wave has been reflected at x =0, then the 

reflected wave now traveling to the right has propagated the distance x, 
as indicated by R(x).   Similarly,  the last quantity of the first term, 
> 
U.(f n),  represents an incident wave which is traveling to the right and 

is located at x = ^  ; i.e., the intermediate support of the system.   The 

quantity r,   {ft ) signifies reflection of this wave at the intermediate 

support, x = $   .   The next term,   R{JP ),  signifies propagation of the 
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reflected wave to the left through the distance (   which locates it at 

the left end, x = 0.   The wave is now reflected again to the right as 
indicated by r (0), and R(x) signifies propagation through the distance 

a » 
x to the point under investigation.   Thus the term U.(x) L  represents 

the contributions of two reflected waves to the right immediately fol- 
lowing the initiation of the incident waves.    This is illustrated in 
Figure 5. 

Now, consider the second term, ii, of the expansion for 

» > < 

UjW'ii = RWra(0)rbn(0Jra(0)R(ln)rbn(f JUj(fn) + RW^r^r^LyO), 

which may also be written as 

u.(x)|.. = R(x)ra{o)R({n)rbn(tn)R(fn)raio)R(fn)rbn(fn)uj(fn) 

< 
+ R(xp (o)R(f )r,  (f )R{! )r (o)u.(o). 

n'   bn    n        n'   a        j    ' 

» 
Following the same reasoning used for the analysis, of U.(x) L, 

one may observe that the added terms correspond to the wave propa- 
gating and reflecting an additional two times with the reflected wave 
again traveling to the right.    This is shown in Figure 6,    The addition 

» » 
of the rest of the terms in the series,  i. e,, U.(x)'...,   U.(x)I.   ,  etc., 

J       '     111 J       '     IV ' 

accounts for all of the reflected waves traveling to the right.    The 
summation of all of the waves traveling to the right is complete if the 
incident wave is added to the above; i. e., 

>»        > » » » 
U.(x) = U.(x)      + U.(x) l. + U.(x) l..  f U.(x) I... + --- 

J    '        J J        i J        n Jv   '   in 

> » 
= U.(x) + U.(x) . 

J J 
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Figure 5.  First—Term Propagation of Waves in the (o,^) 
Portion of the Shaft. 
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« 
Similar results may be obtained for U.(x).   That is, 

« « « « 
U.(x) = U.{x)!. + U.(x)i..+ U.(x)!,..+  --- 

J    '        J       i        J       n        J       in 

« < 
The summation of U.(x), the reflected wave to the left, with U.(x), the 

incident wave to the left, includes all of the waves traveling to the left 
as they are observed passing point x on the shaft. 

The complete response on the open interval (0, ^n) at point x 

may be determined by properly combining all of the waves traveling 
past point x in both the left and right directions.   The expansion of 
equation 18 for Y in terms of N driving forces P(a.) at x = ai , a2, 
• • • fk *  * • S) v   v 

>» «< 
Y = 7Cy[CnU{x)+ Ci2U(x)]. 

indicates the relatively direct manner in which the waves are combined 
to obtain the total response at point x. 

In examining the portion of the shaft {I  , ft) in terms of a single 

driving force P(a.), U. (x) may be thought of as a "modified incident 

wave" which is initiated by the driving force at x = a traveling to the 
> J 

right, as indicated by IL(x) on (0, in): 

> > 
upx) = R(X - ln)[i + c, »cl2rb(in)p[i + cn"1 c12rba(fn))u.(fn - O)H(X - ln). 

> > 

After propagating to x = Ü  , U.(x) becomes (J. (4   - 0) and then partly 

passes through the intermediate support after being modified by 
[I + Cn l Ci2rb (I )],    a characteristic matrix of the intermediate 

support.   The other part of the wave is reflected back to the left from 
the intermediate support, as shown in Figure 7.   The second term of 
the above expression may be written as an infinite series: 
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R(x-ir/[l.Cj-JC^n ^n)]öj{Xn-o) 

Figure 7.  First-Term ProDaaatton of Modified Incident Wave 
in the (in,/) Portion of the Shaft. 
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[i + Cn^Curyyr1^ i ^ i'Cll'
lclärb{fQ)+ {-Cu'lclM'Clt

mic^rh{§n) 
Sm 

i ii ui 

+ (-c„"1c1i)(-cl,'
,Ci,)fc1r

,c1^rb(in) + 

iv 

Again, the order of the terms is indicated by i, ii, iii, etc.   Consider- 
> 

ing ITT (x) and taking, for the time being only the first term i of the 

above expression, 

> > 
U^x)!. = R(x - I )[I + Cn^CuH   (I  )]U.(I    - 0) j      '   i n/l * *    bn   n'J   j    n       ' 

which signifies the wave passes through the intermediate support and 
has propagated a distance (x - £ ). as indicated by R(x - I ).   This is 

also illustrated in Figure 7. 

Consider now the second term, ii, of the expression for 
[1+ Cu^CuiyyP, 

upx) i.. = R(X - ^H-c^c^rygii + cn'»c12rbn{in)]u.{in - o). 

which may be rewritten as 

> > 
u^W!^ = R{X - iJC-cr^RCI - <n)rb(l)R(l - ln)[i + Cn-'cr^d^jUjd^o). 

Following the same reasoning as before, one may observe that the 
added terms correspond to the wave propagating to the right after 
being reflected twice, first at the right end support and then at the 
intermediate suoport.   It is shown in Appendix II that the term 
(-Cii 'Cja) corresponds to a reflection matrix of a fixed support.   This 
means that the intermediate support acts as a fixed support, -which 
reflects the modified w«ves coming from the right after being reflected 
at x = I and will not permit these waves to pass throu^i.   This is 
illustrated in Figure 8.   The same analysis may be applied to the 
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remaining terms of the series.   Similar reasoning may be applied to 

U^x), which has the same form as uPix). 

» » 
u]n(x)= R(X - ln)[i + cli'

lcltrh{in)]^[i +cI1",Curbn(in)uj(in - O)H(X - ln), 

The summation of all of the waves traveling to the right in 
is complete if tl 

above expression; i. e., 

(I    - I) is complete if the "modified incident wave" is added to the 

>» > » 
U™ix) = U^Cx) + U^x). 

< « 
Similar results may be obtained for U^x) and uf^x), the 

waves traveling to the left.   The summation of the waves in the inter- 
val (I  , I) of the shaft is n 

<« < « 
U^x) =  U^Cx) +  U^Cx) 

= R{1 - xJiyWU^O?) + ^)]H(x - IJ . 

The mechanics of the propagation of these waves is illustrated in 
Figure 8, using the first two terms of the expanded form. 

The complete response at point x in (I  , I) due to N single 

forces P(a.), at ai, a.Z. . ., a. . . ., a^ may be determined by 

properly combining all of the waves traveling past point x in both the 
right and left directions. 

. >» <« 
Y=|Cy[C11U

m(x)+ CuU^x)]. 
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2.       Impedance Matching 

The response of the system of Figure 4 in terms of a single 
driving force, P(a.), is 

J 

»> <« 
Y = 7C  [C11U(x)+ CI2U(x)] . 

8   y j J 

By proper control of the conditions at both ends and the intermediate 
support, the reflected waves may be eliminated or at least minimized 
such that the response consists solely or principally of incident waves. 

Mathematical representation of the above statement is to set  U.(x)= 
> «<       < »       <^ J 
U.(x) and U.(x) = U.(x) or U.(x) =u^^=0.    According to equation 18, in 

J J J J J » ^ 
terms of a single driving force P(a.), the condition U.(x) = O.(x)=0 may 
be obtained by setting J J 

ra(o) = rb(l) = rbn{in)^o. 

Physically, this is equivalent to setting the impedance of the supports 
equal to the shaft characteristic impedance at those points.   That is, 
the shaft has been "matched" at the supports. 

If the above conditions are satisfied, equation 18 may be 
rewritten in terms of P(a.) alone as 

J 

LF 

r1c s   y 
0- -c„ Cu- -u.Cx)- 

.  0 cr -C2, C22- -u.W- 

where, for 0<xl   , n' 

U^x) = R(x - aj)-+Cf"1P(aj)f H(x - a.) - H(x - fj] 

U (x) = R(a   - x)C_C'lP{*.)H{a. - x) 
J J l J        j 
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For I   <x<l, n 
> > > 
ü.(x) = U^ix) = R(x - ln)ü.(ln - 0)H(x - ln). 

Examination of these expressions yields the following observations. 

The incident wave initiated from the driving force P(a.) at x = a. has 
J     >       J 

traveled to the intermediate support; this is specified by U.(l    - 0). 

The wave then simply passes through the intermediate support without 
any modification into the interval t  < x < I. One may conclude from 

this that if both end impedances are matched with the shaft character- 
istic impedance,, i. e.,  r (0) = r. (I)= 0,  the effect of the intermediate 

a D 

support on the shaft's dynamic behavior is redundant,   actually, fur- 
ther inspection of equation 18 shows that even if the intermediate sup- 
port were not optimum (the incident wave is now modified in [I  , I]), 

its effect is redundant.   Thus, from a practical point of view, if the 
end impedances can be matched with the shaft characteristic imped- 
ance, nothing is gained by the optimization of the intermediate support 
in terms of .ninimum vibration. 

The matching of end impedances with that of the shaft is a 
formidable task, not only because impedances are a function of fre- 
quency, but primarily because of the uniqueness of the conditions 
required to control these impedances.   Moreover, in practical appli- 
cations, the choice in end support configurations is limited, since they 
usually are governed by such factors as transmission gears, couplings, 
and unwieldy mountings.   Thus, the intermediate support has to be 
employed for optimization purposes, since the end impedances are not 
available. 

Examining equation 18 in terms of P(a-) again, the waves which 
J 

are reflected by the intermediate support or pass through the inter- 
mediate support with modifications are: 
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» 
Uj(x)= R(x)[l - ^(0)^(0)] '^(oKRdjr^dju.dj + U^OJHC^ - x). 

« 
ü.(x)SR(ln-,)(i.rto(io)ra(ln)] ^(^[ü^). Rdjr^UjWlH^-x). 

Ufix) = R(x - ln)[l + Cp. "»Cuiyijpll + CU 'lCllTbDUn)]Ui(ln - 0)H(x - IJ, 

(^(x) = R(X - in)[i + cu'
lCurhUn)]-*[i +CU 'lCurhnHn)]u.Hn - O)H{X - ln). 

<« > » 
Uj^x) = Rd - x)rbd)[ U^d) + U^d) JH(X - ln) . 

If the intermediate support is optimized, i.e., the support impedance 
is matched with the shaft characteristic impedance at that point looking 
to the left (see Figure 4), or r.   {I )= 0, the above expressions may 
be rewritten as follows: 

» < 
UAx) = R(x)r (0)U.(0)H(i    - x) 

J a j n 

« 

Uj(x)= 0 

Ufix) = R{x " ijl + Cn^dz^ajy^.i^ - 0)H(x - IJ 

» » 
U^Cx) = R{x - iJj+C^C^Ujy^.i^ - 0)H(x - ln) 

<« > 
ufix)   Rd - x)rbd)R(i .in)[i   Cu^cu^djj-M ujdn - 0) 

» 
+ U.d    - 0)jH(x - I ) 

►   (19) 
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It may be seen from the above expressions that the only remaining 
» 

reflected wave on (0, f ) is U.(x)   which is an unavoidable situation n 1 « 
since the left end support is not optimized.    However,  since U.{x)=0, 

it will not be reflected at the intermediate support,  and from a vibra- 
tion minimization standpoint it is optimized on {0, H   ).   Examining the 

n < * 
last three expressions, one may note that the incident wave U (x) and 

» J 

reflected wave U.(x) on (0, f ) will travel to x = f    to pass on to j    ' n n       ^ 
(f   , i) and never return to (0, l ) again.    The modified wave will n n7 

propagate back and forth in the (f , H) interval to be damped out even- 

tually by the unmatched impedance at x = f. It should be remembered 
that for the waves in this interval the intermediate support behaves as 
a fixed support and will reflect all of the incoming waves from the 
right. Proper interpretation of equation 19 is, then, that the inter- 
mediate support cannot be optimized to effectively suppress the waves 
which have propagated into thw span or interval adjacent to the span in 
which the driving force acts. 

If the driving force P(a.) were to act in the {(.,() span. 

It   <a.<f fthe following should be observed.    The equations for the 

resulting waves may be obtained by proper permutation of the symbols 
in equations 18 and 19,   Again the impedance of the interior support 
Z^n{fl ) works as a filter; this time the incident waves traveling to the 

left and the reflected waves as they travel from the right end support 
will pass through in a modified form to (0, It ); and,  as in the case of 

P(a.) acting in (0,  f  ), the modified waves will be blocked on tlvs way 

back by the interior support.    Eventually, they will be damped out by 
the impedance at the end support x = 0, 

If an interior impedance rather than an end impedance were to 
be used for optimized control of the vibration amplitudes of the rotating 
shaft, it should be recognized that disturbing forces P(a.) in the span 

It   <a.<f could upset the effectiveness of the interior impedance,  due 

to the fact that the resulting waves in the (0, f ) span have to be 
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suppressed by the impedance at x = 0.   Similarly, the waves generated 
by forces P(a.) in (0, i) have to be damped out by the impedance at 
x = P. •' 

<« 
One obvious way to suppress the U. (x) wave is to let r. (1) be 

identically equal to zero, i.e., optimize the end support at x = f, but 
it was agreed that, in general, the end conditions are such that they do 
not lend themselves very readily to optimization. 

In view of these facts, the minimization of vibration response 
in a shaft by means of an intermediate support may be accomplished by 
letting it approach the support on the right end of the shaft as closely 
as possible while meeting the condition of matching the shaft imped- 
ance looking to the left.    Mathematically, this is indicated in the last 

of equation 19, where as C - f approaches zero,  U. (x) also 
n J 

approaches zero.   In other words, 

<« > » 
\J™{x) = R(l - x)rbn(IX I + Cn^CuF^Wpl U.d - 0) ♦ 11.(1 - 0)]H(x - *n)= 0. 

since rb(^) becomes r    (l)= 0 and R{£ - I ) approaches I. 

It may be said, then, that the closer the matched intermediate 
support is placed to the end support, the more effective the amplitude 
suppression will be in the {(   , i) portion of the shaft.   If the intermed- 

iate support were to coincide with the end support, the system would 
behave as a shaft having only one optimized end.   That is, all reflected 

« 
waves would be suppressed eventually,  since U(x) = 0,   It should be 
noted, then, that one optimized end support will suppress all reflec- 
tion waves and that the impedance will have the same value whether 
one or two optimized end supports are used.   The only difference 
exists in the amplitude response; it is the larger in the case of one 
optimized support.   How much larger it will be depends on how far the 
impedance value of the other support is from optimum. 

In conclusion, it is recommended that the interior support be 
placed very closely to one of the end supports and that some sort of 
mounting be used in the end supports to aid in the dissipation of modi- 
fied traveling waves. 
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3.      Determination of the Matched Impedance of the Interior Support 

The optimum impedance, Zn(ln), of the intermediate support is 

determined from the condition, F.   (j ) = 0.   Using equation 16 and 

comparing the result with equation 11, 

Sn^ = C^0"'1 = V 

if 

2hn^n)   =2h^n)  +ZJltr)' on   n b   n n   n 

then after establishing 2,(1 ) experimentally and computing 2n(* ). the 

optimum impedance of the intermediate support 

Z  (I ) = ! nx n' 

Z Z 

Z Z 
nz 1 "2 2 ' 

may be obtained from 

z (i ) =     ±FZ  (I )F, 1   n       V^      n   n 

where 

# 
F = 

r i       o 

i 
L o    "V^-" • 

The components Z    , Z    , Z     , and Z      may be correlated to physi- an'     ni2     nzi' nzz      J * J 

cal parameters in the following manner.   Let a point support C   having 

a mass Cm exist at |  of the shaft,   r   is the radius of gyration of C 
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about axis of symmetry, r    is the radius of gyration of C   about a 

diameter through the center of gravity of C , and «> is the angular 

velocity of C   about X| axis (see Figure 1).   Let a translaüonal spring, 

Ki, and damper,  C^ be applied to the center of gravity of C0 in a 

symmetric fashion about the X1 axis, furthermore, let K2 and d, 

respectively, be symmetrical rotational springs and dampers applied 
at the center of gravity of C0, then the impedance of Z (f ) may be 
written as follows: 

rl 

Z   (I ) = C! n   n'        * 

0   -> 

Ci 

+ Ik  { 
8 I 0     Kz/fcJ 

+   C 
m 

_0   sr2   - (iw  )r2 

The Z      and Z      are different from zero if the damper and springs 

are not applied to the center of gravity of C0.   The other two com- 

ponents are for the case in which the forces are applied to the center 
of gravity of C0: 

Z      »Ci + ^+C» nn        '        • m 

and 

z      = c2+^ +C     [sr2   - (iu.)r2]. nu       *      s m l     m     v   '  gJ 
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VIBRATING BEAM ANALOGY SOLUTION OF THE 

HYPERCRITICAL SHAFT ON MULTIPLE FLEXIBLE SUPPORTS 

THEORY 

1. Mathematical Model 

The system investigated consists of a rotating shaft supported 
at an arbitrary number of locations along the length of the shaft on 
mass-spring-damper units which resist dynamic loads by translation 
only.   The shaft rotating at angular velocity <*> is forced by its mass 
defects distributed along the shaft length.   The mass defects are 
obtained from statically measured quantities of initial bow, ovality, 
and wall thickness variation, and indicate at any given cross-sectional 
station along the length of the rotor the magnitude and direction by 
which the mass center deviates from the axis of rotation.   It is 
assumed here that the axis of rotation coincides with the elastic line of 
the cross sections of the shaft. 

The solution of the equation of motion is accomplished by 
dividing the system into a number of subsystems.   These are analyzed 
independently and combined eventually by means of the appropriate 
boundary and conditions at the supports.   The system is shown in 
schematic form in Figure 10. 

2. Solutions for the Equation of Motion 

The governing differential equation of the motion for any span 
of the rotating shaft is in its nondimensional form: 

Y,xxxx + Ym = w2€(x)elWt (20) 

where 

Y, 

x 

0) 

normalized runout amplitude in complex coordinates 

position coordinate along axis of the shaft 

angular velocity of the driving forces 
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e(x)       =     normalized vector distance of mass centers from 

axis of rotation 

The steady state solution of equation 20 for any span between 
two successive supports, I,   .  and I., is 

Y, = y{x)eiWt (21) 

where 

y(x) = Aj^jcosh/Sx + A^Sinhßx + A^cos^x + A^ainßx 

~   w2f ♦ (x) 
+   )      ^ for I,    1<x<l,  . 

r=l     r 

^kl' ^k2' ^kS* an^ ^4 are ^^S1*^011 constants and 

y 

'k 

:r= T^TT      /    €{X*TM r    zk   *k-i J r 
dx 

■ ' r- ' 

^ (x)     =    normal modes of vibration for a free-free beam 

-    cosh^w x + cos-J« x -  Ofsinh^« x + sin-^wx) 

in which for the first five terms, 

I 
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1 

2 

3 

4 

5 

V^r 
4.7300388 

7.8532045 

10.995607 

14.137165 

17.278759 

0.9825022 

1.0007773 

0.9999665 

1.0000015 

0.9999999 

and for r>5. 

w I (2r + 1) 
(T = 1 

2e^(cotfr-8idC-) .2ew2/"r v    r    r' 

1 - 2e ^sinlfri) - e   r 
r 

3.      Boundary Conditions 

The boundary conditions at each extreme end of the shaft are: 

at    x   =      0 Ylxx{0) = 0; Ylxxx{0) + ZaYI (0) = 0. 

x   =       i YtxxOO  = 0; YlxxxU) + ZbYi(f) =0, 

where 

n s number of intermediate supports 
2 Z   = K+ iCjW - MM*  complex force per unit displacement 

(impedance) at kth support 

K,  = spring coefficient at kth support 

C.  = damping coefficient at kth support 

Mjj. s mass of kth support 
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Substitution of the boundary conditions into equation 21 yields 

A,  - A    =0 
»i       as 

Z. Z 2 
— A    +-ÄA,   - Am   =-^Y    (0) 0j    ai     ßi    aj       a4     ^j    ipw 

[co.hß]   A^  +   (.intfj A^  -  [corf] ^^   [.inß] A^^O 

z T z z 
[•lnh3 +— coBh^j   A.    + fcoshß + —- ainhß]  A.    +[811^ + -^ coaßl A 
L ß3 ^ Dl L ßi i        D2      L a3 J       Dj 

z z 
+ [ -CO.J8 + -^.inß]  A.    = - — Y   (I). 

I ßi J      D4 ßJ     IP 

00 
Zw2€r<|*r(x) 
  

Let 

and 

«b 

r      o 

H   = a 

1 

Z  a 

0 

0 

0 

0 

z 

ß 

0 

0 

-^   -1 
3 

0 

0 

0 0 0 0 

0 0 0 0 

cothß 

ß1 

■iäh/3 
z. 
ß3 

-COS0 
Zh 

ßs 
:ot0 

-Binß 
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Also let 

I    k' \ 

\- - 

v   A.    / 
k4 

-I 

\ 

-^Y    (0) 
ß3      IP 

ß 7 ip(f) 

The boundary conditions at x = 0 and x - i may be written in 
matrix rotation as follows: 

H A   + H. A.  = E . a  a        D   b 
(22) 

Boundary and continuity conditions at the kth intermediate support are: 

Y, (*k+ 0) 

Yix{«k+ 0) 

Yixx(«k+ 0) 

Yixxx^ 0) 

YiO*k-0) 

Yix(^k " 0) 

YncxC^ * 0) 

Ylxxx(fk-C>+ZkY,(ik-0), 

where -0, +0 denote, respectively, the limit from the right and the 
limit from the left.   When expressed in matrix rotation, these equa- 
tions may be written as 

^ +1 

Z, Z 

K     K o3       K     K nj       K 
(23) 
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where 

V 

"coshßlj 

coshßL 

j sinhßlty 

cosh^l. 

cosh^l. 

cosßjf1 

Binßl^ 

■coaßL 

sinßL 

sinßljj 

co8ßlkj 

-8ii^lk; 

-coaßL i 

Tk = 

0 

0 

0 

coahßl. 

0 

0 

0 

sinh/31 

0 

0 

0 

k        coaß^ 

Blc=< 

0 

0 > 

Dividing by S,, equation 23 becomes 

zk      -      z- Ak+1=[I+^Sk",Tk]   Ak^SkX- 

where I = identity matrix. 

Let 

P
k
sSk"lTkaodQksSk",Bk' 

0    1 
I 

o     i 

o    ! 

BinßLl 
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then from the recurrence formula, 

z.     , z 
Ak+i

= [1+77PJ ^^k 
it foUows that 

V b   a + G
1 

where if 

* 

V = I 

G   = a = c, 

then 

i. = ri+-^p i R , b        l        03    n J      n' 

Z 
R,  = 

R   =    [l + -^ 1  R    ,. n        I 03     J     n-1 

r       Z     1 
Rl =   I1+-7 I     Ra. 

L       ^3   J a 

(24) 

(25) 
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and 

Z -      Z 
GK=—Q,+   ri + -£p IG. b      03    n       t        «3    n J     n 

Z    - 1 r       Z     1 1 
G   =-^ Q    , +  |I+-li:iPn.l|Gn.1. n «3 n-1       I 03       n-lj    n-1 

Z r       Z «i 

CK  =-7-Qa+    h+-7Pa JGa. 03     a        1        «3    a J    a 

Substitution of equation 25 mto equation 22 yields 

HaAa + «b [ Va + Gb]   = E- 

Rearranging terms, 

Aa=   [Ha + HbRb]   ^    ^-"bSl. (26' 
Solving for A , all other coefficients. A-, A , --, A,, --, Ai, can be 

obtained with equations 24 and 25.   The amplitude runout at any span 
(JP,     , i ) can then be computed with equation 21. 

NUMERICAL RESULTS 

1.      Computer Program 

A computational procedure based on equations 21, 24, 25, and 
26 has been programmed for the University of Virginia Burroughs 
B 5000 high-speed digital computer.   Typical numerical results are 
presented in the next section. 
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A flow diagram of the computer program is presented in 
Appendix HI.   It will compute the runout amplitudes in terms of given 
frequencies at an arbitrary number of points for any initial defects dis- 
tribution for a shaft flexibly supported at as many points as possible 
from a computational standpoint.   This maximum number of supports 
feasible for any given computer run depends on the rate of convergence 
of the numerical solution of equation 26, which decreases rapidly with 
an increasing number of supports.   It is believed that a shaft having 
five intermediate supports represents a practical upper limit that can 
be processed with any reasonable speed and accuracy. 

2.      Presentation of Results for Parameter Study 

A limited parameter study in terms of several massless spring- 
damper configurations has been performed for the 4. 5-inch-outside- 
diameter, 28-foot-long Chinook drive shaft running on one intermedi- 
ate support.   This support is located at one of the following points: 
one-eighth, one-quarter, and one-half span.   The end supports are 
assumed to possess the characteristics of a simple support, while 
the intermediate support has any one of the following spring-damper 
combinations: 

Configuration K  lb./in. C   lb. sec. /in. 

1 0 0 
2 1060 0 
3 10600 0 
4 0 1.954 
5 1060 1.954 
6 10600 1.954 
7 0 5.863 
8 1060 5.863 
9 10600 5.863 

The dimensions and input values used in the parameter study 
are shown in Figure 11.   The results of maximum radial runouts of the 
shaft at given frequencies in terms of the above listed parameters are 
presented in graphical form in Figures 12 through 36.   For the sake of 
simplicity, the initial defects curve is assume^ to have the shape of a 
half sine wave lying in a plane through the axis of rotation of the shaft 
and having a maximum defects amplitude, €    , at midspan.   The 
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Eyl   =   U.ll   x   I07!b-in2 

A P  = U.26 x   I0-Ü b -sec 2/in2 

li  =U2.bl25in 

^'-W-gggin H' 
tp   169.25  in 

C| 

,1  = 338.5  in 

x2 

ALUMINUM  SHAFT 
I.D.   = U.26  in 
O.D.   = U.50   in 

1|   =  designates tne   location of   intermediate 
„        „ ..o       . support 
Ra  =  Kb I08 lb/in -% 

. imitates simple su 
Ch = 0 lb-sec/1 J characteristics 

pport 

'beam :: V = 1.06 ID/jn 

1/2 cbeam - ih**P)Ud    =  0.39087 lb-sec/in 

U.26 cycles/sec 

Ficure II. Dimensions and Input Values for the 

Chinook Dr ive Shaft. 
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results are given in nondimensional form; i. e., maximum runout 
amplitudes are indicated in terms of a unit defects amplitude, fre- 
quencies in terms of the fundamental frequency of the simply supported 
shaft.   In this case, the fundamental frequency is w   = 4. 26 cycles per 

second.   It is hoped that this limited study will indicate trends in shaft 
behavior, as the spring and damping coefficients, as well as the loca- 
tion of the intermediate support, are varied. 

3.      Discussion of Results of Parameter Study 

Several comments may be made concerning trends in the 
behavior of shafts on one intermediate support, as presented in 
Figures 12 through 36. 

1. An increase in the spring stiffness of the intermediate 
support will increase the values of the natural frequencies 
in accordance with the relationships shown in Figures 37, 
38, and 39. 

2. Appreciable changes in the damping coefficients do not 
induce significant shifts in critical frequencies. 

3. An increase in the damping coefficients tends to decrease 
maximum runouts, provided that the accompanying stiff- 
ness value is low (<1060 pounds per inch). 

4. Placement of the intermediate support near one of the end 
supports also tends to decrease maximum runouts. 

The cross marks shown in Figures 12 through 28 indicate the 
occurrence of sudden high runout amplitudes, which corresponds with 
the second and fourth critical frequencies of the shaft for the case in 
which the support is at midspan and the third critical for the case in 
which it is at quarter span.   In the first case, these criticals are 
excited by the defects distribution which is not completely symmetrical 
about midspan due to round-off errors in the computations of the coor- 
dinates for the forcing function.   This minute asymmetry is of suffi- 
cient magritude to cause large spikelike gains in amplitude at the 
antisymmetrical critical frequencies,  since there is absolutely no 
damping available from the translational spring damper (located 
exactly at li = 0. 5ft) to suppress these gains.   In the case of the 
running shaft in which the intermediate support is located at quarter 
span, one of the node points of the third critical mode coincides with 
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the intermediate support point such that the damping is momentarily 
lost.   At the frequencies immediately adjacent to the third critical 
frequency, these points do not coincide and damping is available to 
adequately suppress excessive runouts.   For the shaft with the inter- 
mediate support at one-eighth span, these spurious runouts are not 
seen for the first four critical frequencies, but will probably show up 
with the sixth or seventh critical frequencies. 

4.       Natural Frequencies of a Flexibly Supported Shaft With 
Concentrated End Masses [ Reference 5] 

In this study, the effects of variation in both end spring stiff- 
ness and end mass on the natural frequencies of shafts on two flexible 
supports with end masses are investigated; no intermediate support is 
being considered.   A schematic of this configuration is shown in the 
upper left comer of Figure 40.   The results in this figure are pre- 
sented both in nondimensional units and units which specifically apply 
to the Chinook drive shaft.   If a stiffness of 

E I 
—^   =1.06 lb./in. 

and a natural frequency unit of 

E I 
—^— = 2.71 rad/sec (0.432 rev/sec) 
pAf4 

were used, the nondimensional units (left side and bottom scales of 
Figure 40) will convert to the dimensional units (right side and top 
scales of Figure 40) for the Chinook shaft.   The above unit conversion 
factors are on an aluminum shaft with a 4. 5-inch-outside-diameter and 
4. 2{)-inch-inside-diameter and are unsupported along a 338.5-inch 
span. 

Figure 40 shows that the frequencies of a free-free shaft occur 
for zero spring stiffness and no end mass and that the frequencies of a 
pinned-pinned shaft are obtained in the limit &3 the spring stiffness 
approaches infinity.   (These frequencies are indicated on the left- and 
right-hand edges of the chart,  respectively.) 
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As an example, consider the curves for a shaft with end 
masses each of which weighs the same as the shaft itself (i. e., 
H = 1. 0),   Physically, these end masses correspond to the gear-boxes 
at each end of the power transmission shaft.   The flexible end supports 
are provided in the actual system by the fuselage of the helicopter. 

If it were assumed that the shaft behaved as a pinned-pinned 
beam at all rotational speeds in the range of interest (essentially the 
range of the chart), it may be observed that end springs of stiffness 
larger than 200, 000 pounds per inch would be required.    This is a very 
stiff spring indeed. 

A more likely behavior is that indicated for a spring stiffness 
parameter, kL3/EI - 10, 000 (k = 10, 600 pounds per inch).   Studying 
the natural frequencies of the shaft for this spring condition andjx = 1, 
the first two critical frequencies are encountered at 4. 3 revolutions 
per second (9. 87 X 2. 71 = 26. 8 radians per second and 17. 0 revolu- 
tions per second (39. 48 x 2. 71 = 107. 2 radians per second.' These 
frequencies are equal to the first and second pinned-pinned natural 
frequencies, respectively.   Consequently, at these speeds the 10, 600 
pounds-per-inch spring stiffness is adequate to effectively pin the ends 
of the shaft.   The next two criticals correspond to antisymmetrical and 
symmetrical modes and occur at speeds of 35.9 and 42.0 revolutions 
per second, respectively.    The mode occurring at 35. 9 revolutions per 
second represents a tr<xnsition between the first free-free and the third 
pinned-pinned modes; at 42. 0 revolutions per second, the mode repre- 
sents a transition between the second free-free and the fourth pinned- 
pinned modes.   Note that these critical frequencies bracket that of the 
third pinned-pinned natural frequency.   All subsequent criticals may 
be considered as "free-free" since the natural frequency values are 
the same as those which would occur if no end springs were present. 
As indicated in the chart, these criticals occur at frequencies of 69. 5, 
107. 7 and 154. 3 revolutions per second.   Although they correspond to 
the fourth through sixth free-free criticals, the effect of the end mass 
has been to reduce the critical frequencies to values just slightly 
larger than the second through sixth pinned-pinned natural frequencies. 

Examining the significance of these findings, exceedingly stiff 
supports are required to insure pinned-pinned behavior for the fre- 
quency range of interest.   Even in carefully designed experimental 
rigs,  spring stiffnesses in excess of about 100, 000 pounds per inch 
cannot be achieved.   Consequently, at the higher frequencies. 
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pinned-pinned behavior of the shaft cannot exist either for the full- 
scale power transmission shaft or for modelled experimental investi- 
gations. 

The results and discussion presented here is directly appli- 
cable to a power transmission shaft attached to gearboxes supported 
on translational springs.   Although results are not currently available, 
there appears to be no reason to believe that the same general conclu- 
sions regarding the effect of the boundary conditions would not be 
valid for other support configurations.   For example, suppose that the 
gearboxes were also mounted against rotation by use of rotational 
springs; the translational and rotational springs would allow a transi- 
tion from free-free to pinned-pinned to fixed-fixed boundaries, and 
again the particular boundary condition most representative of the 
behavior of the shaft would depend on both the spring coefficients and 
the rotational speed.    The pinned-pinned condition, for example,  could 
not be assumed for the entire frequency range.    The analysis for this 
situation requires a generalization of the computer program and should 
be performed at some futui    date. 

The above analysis could serve to explain some of the dis- 
crepancies which exist between experimental and theoretical studies on 
rotating shafts.   The predicted and measured shaft performance could 
be significantly different if the incorrect boundary conditions (end 
impedances) were assumed.   Note, however, that the measured 
natural frequencies may not indicate an error.    For the example dis- 
cussed (kL3 /El = 10, 000,  |JL = 1.0),  all of the natural frequencies have 
values close to the expected pinned-pinned frequencies.    The critical 
speeds at 35.9 and 42. 0 revolutions per second corresponding to the 
transition modes deviate a little more from the bracketed pinned- 
pinned frequency.   It is possible, however, that this difference would 
be unnoticed in an experimental run and that one of the two criticals 
would pass undetected.   If so,  a logical but false conclusion would be 
that the supports are pinned.    It should be understood that the end 
impedances for free=free shafts with heavy end masses are totally 
different from those for pinned-pinned shafts.   (The force effect of 
mass on the shaft is 180 degrees out of phase with the force effect of 
spring,  since the former is associated with acceleration and the latter 
with displacement; the pinned-pinned condition represents the shaft 
supported on infinitely stiff springs, not infinitely large masses.) 
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5.       Numerical Comparison Study [Reference 4] 

In order to evaluate the significance of the added terms in the 
governing differential equation, a numerical evaluation is performed 
between critical speeds obtained by the plain beam equation and the 
more complete equation of rotating shafts.   The specific shaft con- 
figuration considered was made of aluminum tubing, 4. 5 inches in 
diameter by 28 feet long and 0. 070 inch thick. 

A simply supported shaft is selected in the determination of 
errors between critical frequencies obtained by the vibrating beam 
equation and those by the more complete equation which includes the 
gyroscopic,  rotary inertia, and shear terms because the ideal bound- 
ary conditions permit convenient closed form solutions.   It is felt that 
errors should be similar for the flexibly supported and the simply sup- 
ported shaft. 

Equation 7, the equation of motion for the deflection, y, of a 
shaft, at position x, vibrating with frequency w, may also be written in 
terms of stationary coordinate axes in the following manner. 

^ + ^o) [ fm + 1) w - Ziu.]  ^ - u)2[l -  Ti2mu)  (w- 21 w) ] y = 0       (27) 
dx4 dx2 

The unit of distance is the length, It. 

The unit of time is ^—   where Ü   =-jz   V El/pA. 
o 

The unit of mass is the mass of the beam,   pAl. 

If the parameter r] - l/A£2 vanishes (infinitely slender beam) 
the simple beam equation results.    For nonzero, r], the motion 

depends also on m = E /K' Eg and w, the spin frequency of the beam 

about its longitudinal axis. 

The moment and shear along the beam are given by: 

dK        —   , dP+ W (m + l)w-2icj] -^ 
M(x) = ^ + ^mwV,  S(x)= ~ = S2L . (o8) 

dx2 1 - Ti2mu)(co-2iu)) 
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The general solution of equation 27 is: 

y(x) = A cosh /3x + B sinh ßx + C cos yx + D sin yx 

where 

ß=vei={v{   yi + ^-[(m- l)u) f 2iu,j -   |[ (m+ 1) to-ZOj)}^ (2^ 

i 

= «e, = {w(      y ^^[(m- 1)«+2iü)] + | [(m + l)w-2no])}^   (30) 

and 

Y 

and A, B, C. and D are constants to be determined by the boundary 
conditions. 

For the simply supported beam, sin y = 0,  equation 30 at the 
critical frequencies becomes 

h- /   l/    .   .      (m + Unw 
U) 

(m -I- 1) r\tjt 
2 

i '/z ^ulspü^     \   /2 = ffn 

or 

T!2 mu)4 + ( 1 + iT2n2Ti{m - 1)] w2 - T^n4 = 0 (31) 

where n is an integer indicating critical mode number.   In the evalua- 
tion of equation 31 for the critical frequencies of the 4. 26-inch-inside- 
diameter, 4. 5-inch-outside-diameter, 0. 070-inch wall by 28-foot- 
long, aluminum rotor, the following numerical values were used: 

r] - 1.74 X lo'5 

m = 5. 3 with K1 = 2. 

The critical frequencies for the rotor, using the equation for which 
gyroscopics, rotary inertia, are shear and neglected, are simply 
determined by 

u) = nTTQ 
o 

where for the aluminum shaft Q   = 2. 71 radians per second = .432 rps. 
From these equations, it was determined that for the ninth critical 
which occurs in the vicinity of 20, 000 rpm, the discrepancy between 
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critical frequencies is 2. 8 percent; for the sixteenth critical, at about 
60, 000 rpm, the discreparcy is 6. 7 percent. 

It may be concluded that for the speed range considered, the 
critical frequencies predicted by the simple vibrating beam equation 
arc reasonably accurate. 
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MULTIRING SQUEEZE FILM DAMPERS 

FREQUENCY DEPENDENT DAMPER (References 1 and 3] 

It has been established analytically and experimentally for 
hypercritical shafts that there is an optimum value of damping for 
each critical speed. 

A damper which will meet these requirements is the multiple 
concentric ring damper, a device which consists of a number of trans- 
lating, but nonrotating, rings nestled one into the other (see Figure 
41).   Damping is derived from the hydrodynamic action of the pres- 
surized oil films between the rings.   It has been found experimentally 
that these rings should be pinned against rotation to prevent hydro- 
dynamic instabilities and consequent excitation of nonsynchronous 
whirling of the rings. 

The damping and spring coefficients, C and K, respectively, 
are defined by C = Fnr,/ pw and K = FR/ p, where F«, and FR are the 

tangential and radial components of force which the journal experi - 
ences due to p, the journal runout, and w, the circular frequency.   A 
collection of parameters is required to specify a theoretical multiple- 
ring (MR) assembly; i.e., length, radius, and clearance of each 
film, the masses of the rings, the ambient pressure, fluid viscosity, 
operating speed, and radius of journal runout orbit. 

The multiple-ring assembly can be regarded as a synthesis of a 
single-film device.   Digital computer programs have been written 
which compute up to five films bearing properties over a fairly useful 
range of the characterizing parameters.   This includes 0.1<L/D<3. 0 
and film eccentricities which are not substantially greater than 0. 7 to 
0. 75.   These programs are based on the analytic expressions which 
describe the single-film assembly. 
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In the design of dampers for a given range of C, a single-film 
computation shows that the required clearance is usually too small for 
the expected runouts.   A multiple-ring assembly can be tried in order 
to achieve a gain in allowable runout. 

The values of C for the two films tend to combine roughly like 
capacitances in series.   This simplified picture is approximate but 
does give, in the case of light rings, a useful way to make qualitative 
statements about an MR assembly.   At high operating speeds, the 
inertia of heavier rings will restrict their motion and most of the 
motion will take place in the innermost film.   At low speeds, action of 
all the films will be evident.   Thus, at high speeds, the nigher C coef- 
ficient will be roughly that corresponding to the innermost film, and at 
low speeds C will correspond to that predicted by the single film of the 
outer clearance.   This, then, is a qualitative explanation of the varia- 
tion of C with w in the MR assembly and the reason for its usefulness 
in frequency responsive damping bearings for supercritical rotors. 

The graphs and charts presented here should be regarded as 
illustrative of the type of results which may be expected for the 
multiring bearing assembly when applied to the Battelle shaft model. 
Although there are limitations to the frequency-dependent character- 
istics of the damping coefficient which can be achieved (some of which 
are evident in the data presented), these results can be improved with 
additional manipulation and refinement in the selection of the support 
parameters. 

The basic specifications of this two-ring damper are as follows 
(refer to Figure 41): 

L - length = 0. 95 inch 

r = radius of the bearing = 2. 25 inches 

r| = inner radius of the outer ring = 1. 25 inches 

TZ s radius of the journal = 1.0 inch 

C0 * radial clearance of the outer film = 16 MILS 

Ci = radial clearance of the middle film = 6 MILS 

Cz - radial clearance of the inner film = 5 MILS 

M = mass of outer ring = 1335 grams 
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Mi = mass of inner ring = 215 grams 

jio = viscosity of fluid in outer film = .2 POISE 

Ki = viscosity of fluid in middle film = . 1 POESE 

M-z = viscosity of fluid in inner film = . 1 POISE 

P = ambient pressure = 20 PSI 

Tolerances on all the linear dimensions should be held to 5 
percent or better.    The masses of the rings should be maintained to 
within about 10 percent of the values specified; the above design is 
based on the rings made of steel (SP.   GR.  = 7. 8), 

The viscosities indicated correspond to Teresso 43, at 100oF 
for the outer film and 150oF for the middle and inner films.    Teresso 
43 is, according to the charts, somewhat less viscous than SAE 10W 
oil.    The temperatures chosen are those typically used in some simi- 
lar calculations; any indication that the operating temperatures are 
significantly different from these will be a signal for recalculation. 

The choice of ambient pressure equal to 20 PSI was based on 
past experience; this should certainly be enough to effect the fluid 
exchange required to offset heat generation in the bearing.   If the 
fluid is saturated with gas at ordinary atmospheric pressure, then Pa 

refers to gauge pressure. 

Figures 42 and 43 show damping coefficient versus runout of 
the journal for constant values of shaft speed.    From these figures it 
may be obeerved that the damping coefficient remains relatively con- 
stant with respect to runout at low runouts or low shaft speeds. 

Figure 44 superposes a cross plot of the results from Figure 
42 on the curve of desired damping characteristics.    Curves of con- 
stant runout of 4,  8, and 12 mils are presented.    The vertical bars 
indicate the complete range of damping coefficient experienced at the 
critical speeds for the values of runout represented in Figure 42. 

Table I is also included and gives values of the effective spring 
coefficients,  K, obtained for this two-ring damper assembly.   Note 
that all of these values are negative, and an equivalent mass at the 
journal can be obtained by dividing the values oi K by v*. 
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f                                                           TABLE 1 1 
EFFECTIVE SPRING COEFFICIENT, K, FOR TWO-RING DAMPER 

j u* = 8 rev/»ec. w = 34 rev/sec. w  = 78 rev/sec. 

RUNOUT 
(mil«) 

-KxlO"' 
(lb. An. ) 

RUNOUT 
(mils) 

- K x 10'* 
(lb. An. ) 

RUNOUT 
(mils) 

-Kx 10"J 

(lb. An. ) 

2. 15 1306 2.16 2. 119 2.21 11.85 

4. 33 . 1291 4.35 2. ?!5 4.43 11.77 

6.58 . 1266 6.60 2./,73 6.70 11.63 

8.91 . 1230 8.94 2.212 9.03 11.42 

11.3 . 1184 11.4 2. 134 11.4 11. 12 

14.0 .1129 14.0 2.038 14.0 10. 14 

16.9 . 1066 16.9 1.928 16.7 2.643 

11 u = 138 rev/ sec. u   = 215 rev/ sec. w   = 310 rev /sec. 
 __      —! 

RUNOUT 
(mds) 

- K x 10'2 

(lb. /in. ) 
RUNOUT 
(mils) 

- Kx 10"' 
(lb. An. ) 

RUNOUT 
(mils) 

- K x 10"' 
(lb. An) 

2.32 33.8 2. 54 69.86 2.89 110. 1 

4.63 34.0 4.98 69. 14 5. 30 79.23 

6.92 34. 16 7.00 61.26 6. 38 74. 36 

9. 16 32.69 8.30 58.78 7. 10 92.79 

11. 1 28.92 9.51 60. 25 7.95 122.9 

13.0 22.71 11.2 56.87 9   17 139.7 

15.9 8.737 14. 1 36.00 11. 5 111.7           1 

1 
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TABLE 1 (CONTINUED) 

1   «  = 25 rev /iec.             1 w   = 75 rev /sec. U    =   125 r#«v /«*r             1 

RUNOUT 
(milsi 

- Kx 10"» 
(lb. An ) 

RUNOUT 
(mils) 

-Kx 10'» 
(lb. An. ) 

RUNOUT 
(mils) 

- Kx 10"» 
(lb. An. ) 

1.07 1.274 1. 10 11.01 1. 14 28.36 

2, 16 1.269 2.20 10.99 2.29 28.40 

3.24 1.264 3. 31 10.95 3.44 28.43 

4. 34 1.256 4.43 10.91 4. 58 28.47 

5.46 1  245 5. 55 10.86 5.72 28. 50 

6.59 1.232 6.69 10.78 6.87 28.49 

7.74 1.217 7.85 10.68 8.02 28.38 

8.93 1. 199 9.02 10.58 9. 16 27.93 

w s 175 rev /sec w   - 225 rev /sec. w   = 275 rev /sec.         | 

RUNOUT 
(mil») 

-Kx 10"» 
(lb. An. ) 

RUNOUT 
(mils) 

- Kx 10'» 
(ib. An. ) 

RUNOUT 
(mils) 

- K x 10'» 
(lb. An. ) 

1.21 50.29 1.29 73.98 1.38 97.45 

2.41 50.56 2. 57 74.75 2.74 98.70 

3.61 50.95 3.82 75.32 4.08 91.65 

4.79 51.42 5.03 72.48 5.24 80.62 

5.94 51.08 6. 11 67.48 f.05 73.54 

7.04 49.52 6.95 63. 52 6.61 72.02 

8.04 47.20 7.60 61.93 7.07 74.81 

8.89 44.98 8. 16 62.36 7.49 80.85 

i  w   = 325 rev / sec. 

RUNOUT 
(mils) 

- Kx 10"» 
(lb. An.) 

1.49 119.7 

2.97 114.0 

4. 37 92.60 

5. 31 77. 14 

5.89 71.62 

6.29 74.26 

6.62 83. 53 

6.95 97.75 
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Operation of this bearing depends upon the provision of a load 
resisting spring connected between the journal and the bearing housing. 
A schematic of this arrangement is indicated in Figure 41.   This 
spring should be arranged so as to offset the negative "spring" obtained 
in the multiring computations. 

LIGHTWEIGHT DAMPER [ Reference 4] 

In the previous section a conceptual design was presented for a 
multiring damping assembly which could accommodate the Battelle 
model of the Chinook drive shaft.   Although this design provides the 
necessary damping as a function of frequency, the ring masses 
required are excessive.   Similarly, dampers designed to match the 
variable damping requirements (Figure 45) of the full-scale, 4.5- 
inch-diameter,  28-foot-long aluminum Chinook helicopter shaft are 
also relatively massive (4 to 5 pounds) compared to the lightweight 
bearings desired. 

Presented in this section is a multiring bearing configuration 
in which the variable damping characteristics have been sacrificed for 
the sake oi li^itweight design.   One aspect which should still make the 
multiring damper an attractive means for suppressing shaft criticals 
is the fact that it will provide high damping coefficients with low- 
viscosity damping fluids.    The low-viscosity fluid recommended is the 
Dow Corning,  20 centistoke, 200 fluid, which, in comparison to other 
fluids, is less viscosity sensitive to temperature changes.   The vari- 
ation of viscosity with temperature for this fluid is shown in Figure 46. 
The higher viscosity fluids needed for shear dampers (50, 000 to 
100, 000 centistokes) are more temperature sensitive and yield less 
desirable damping coefficients at temperatures lower than operating 
temperature. 

The variable damping characteristics of the multiring damper 
are obtained by a careful selection of masses and clearances of the 
rings such that an increase in damping occurs with an increase in rota- 
tional speed.   The damping coefficient depends primarily on the 

quantity M p w2 (where M = mass of outer ring,   p = journal runout,  and 
w - angular speed).   Consequently, when p and « are relatively small, 
as in the case of the Chinook shaft, large outer ring masses are 
required to provide the desired damping profile shown in Figure 45. 
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In view of these observations, it was decided to select a light- 
weight, two-ring damper having a constant damping output with changes 
in frequency and specifically designed to be optimum for the fifth criti- 
cal frequency of the Chinook Shaft.   In other words, the damper has 
been designed to deliver a damping coefficient of about 6 pounds per 
second per inch over the entire speed range operating at a temperature 
of 160oF. 

The design specifications recommended for the damper are as 
follows: 

length of the damper    =    1.5 inches 
radius of the housing    s    2. 25 inches 
inner radius of the outer ring    =    2.125 inches 
outer radius of the bearing holder    =    2.00 inches 
radial clearances of all 3 films    =    0. 012 inch 
mass of outer ring    =    0. 25 lb (Al), 0.151 lb (Mg). 0, 65 lb 

(Fe) 
mass of inner ring    =    0. 24 lb (Al), 0.141 lb (Mg), 0. 62 lb 

(Fe) 
ambient pressure    =    15 psi (atmospheric) 
viscosity of fluid   =    refer to Figure 46 

Typicpl results for the damping coefficients at various temper- 
atures are presented in Table 2.   Case I represents a bearing in 
which the entire assembly is of the same material.   Case n is for an 
assembly constructed of different materials arranged to utilize their 
different coefficients of expansion in a manner which would partially 
compensate for the viscosity change of the fluid.   Consequently, a 
smaller change in the damping coefficient with temperature is pro- 
duced. 

The value of the damping coefficient at 160oF is optimum for 
the fifth critical speed as specified in Figure 45.   At lower tempera- 
tures the results of Table 2 indicate a damping coefficient which is too 
large.   This is due to the increased viscosity of the damping fluid. 
For Case I at the first critical frequency and a temperature of -30oF, 
the damping coefficient is 30 times larger than the optimum value. 
Although an overdamping of this magnitude could result in rough oper- 
ation at the critical speeds, it is felt that the mnouts and bearing 
loads actually experienced could be tolerated. 
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TABLE 2 

DAMPING COEFFICIENTS IN THE LIGHTWEIGHT 

TWO-RING DESIGN 

1 ■      - "■■   '- ■'—   — 1 

TEMPERATURE 
|               0F 

DAMPING COEFFICIENT LB. SEC/IN. 

CASE I CASE II 

160 6.0-    7.0 6.0-    7.0 

90 12.0 - 13.0 10.0-11.0 

27 23.0     24.0 16.0 - 17.0 

-4 32.0 - 34.0 21.0 - 22.0               | 

-30 45.0 - 47.0 34.0 - 35.0 
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Case n illustrates the beneficial effects which can be obtained 
by utilizing different materials in the bearing asßembly.   If the rings 
and housing are constructed of materials of different coefficients of 
expansion, they can be arranged to bring abcut an increase of the ring 
clearances with decreasing temperature.    This in turn leads to a 
lowering of the effective damping coefficient of the damper.   With this 
behavior in mind a number of configurations were investigated using 
common materials with widely separated coefficients of expansion. 

Steel (Fe), a = 6. 5 X lO'^F 
Aluminum (Al), o  = 10 X lO'^F 
Magnesium (Mg), a  =15X10 ^F 

The combination which leads to the smallest increase in damp- 
ing coefficient with lowering temperatures consists of a damper for 
which the damper holder and both rings are of magnesium and the 
housing is of steel.   The results for this combination are presented in 
Table 2. 

It should be mentioned that the rings and damper holder should 
be pinned to permit translation but to prohibit rotation, thus preventing 
hydrodynamic instabilities and consequent excitation of nonsynchronous 
whirling of the rings.   Damping should be derived from true squeeze 
füm action.    Furthermore, no external restoring springs are required 
in the design of the proposed damper.   In this particular design, the 
resultant springs provided by the fluid films are directed radially 
inward and are of sufficient magnitude to provide adequate centering. 
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- w 0  . w3/2 0 
^   -    n      ' ' Cf = w 

<- 0 w3/*- ^0 tu - 

where n as used in this context denotes an arbitrary real constant. 
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APPENDIX TI 

EVALUATION OF THE REFLECTION MATRIX OF A FIXED END 

For a fixed end, at x s 0, the boundary condition is 

Y = 0. 

Hence, using equation 9, one may obtain 

1 Y(0) = fcyc,, R(0)q tf C12R(-0)r] ^ 0 

or 

q = {-C„'IC,2)r. 

For an end support which is not specialized. 

za(o) I 

Z  (0> 11 
Y{x) =7Cy[CnR(x)q +C12R(-x)r] 

F(x) = Cf[Ca R(x)q + C«R(-x)r] 

Q = sZY 

(a) 

at x s 0 

F(0) = 8Z(0)Y(0) (b) 

Combining a and b, we get 

Cf[Caq + CUT] - Z  {0)C [ClloL+ Cl2r] a, ,   y. 
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After some algebraic manipulation, the following relation may be 
obtained: 

q = ra{n)r. 

Comparing this expression with 

q = (-Cn^C^r. 

it may be concluded that for a fixed end, the reflection matrix is 

ra(0) = Cu^Cu 

Similarly, it can be proved also that 

rb(l) = C^dz 

for a fixed end. 
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APPENDIX HI 

FLOW DIAGRAM OP THE RUNOUT PROGRAM 

DECLARE INPUT VARIABLES AND READ IN PROCEDURES 

Procedure:   READ AND PRINT DATA 

 Specifies format of data input and regult« output 

Procedure:   QARCTAN 

Specifies phase angle between X2 and X3 components 

of runout 

Procedure:   INVERSION 

Computes inverse of given matrix 

Procedure:   ALPHA AND SIGMA 

Computes constants used for free shape function 4 (x) 

i 
Procedure:   COMPUTEPHI 

Computes the shape function 

Procedure:   ÜÄVR ETC. 

Procedure:   ÜQAND VA 

Procedure:   BR AND BI 

Integrates numerically particular part of solution 

Procedure:   PRINT URVR ETC. 

Prints out to give insight of convergence rate of 

numerical integration 

I 
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Procedure:   INTERPOLATE 

Interpolates 1'nearly values of initial deformation not 

specified as input  

Procedure:   PRINTOMEGA 

Print format 

, i        m 
I       INITIALIZE AND  NONDIMENSIONALIZE INPUT DATA 

EXECUTE ABOVE PROCEDURES IN SUITABLE ORDER 

AS SPECIFIED BY EQS. (21), (24),  (25) AND (26). 

Real and imaginary components of runout are treated 

separately in terms of real coordinates (X2, X3) 
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